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Abstract. The problem of existence of non-analytic (Griffiths-like) contributions to the free
energy of a weakly disordered Ising ferromagnet is studied from the point of view of replica
theory. The consideration is undertaken in terms of the usual random temperature Ginzburg–Landau
Hamiltonian in space dimensionsD < 4 in the zero external magnetic field. It is shown that in the
paramagnetic phase, at temperatures not too close toTc (where the behaviour of the pure system is
correctly described by the Gaussian approximation), the free energy of the system has additional
non-perturbative contributions of the form exp{−(const)τ (4−D)/2/u} (whereτ = (T − Tc)/Tc),
which has an essential singularity in the parameteru → 0 which describes the strength of the
disorder. It is demonstrated that this contribution appears due to nonlinear localized (instanton-
like) solutions of the mean-field stationary equations which are characterized by the special type
of the replica symmetry breaking. It is argued that physically these replica instantons describe the
contribution from rare spatial ‘ferromagnetic islands’ in which the local (random) temperature is
belowTc.

1. Introduction

According to the original statement of Griffiths [1], the free energy of the random Ising
ferromagnet in the temperature interval above its ferromagnetic phase transition pointTc and
below the critical pointT (0)c of the corresponding pure system must be a non-analytic function
of the external magnetic fieldh, such that in the limith→ 0 the free energy as a function ofh
has essential singularity. Since this type of phenomenon, namely, the existence of non-analytic
non-perturbative contributions to thermodynamical functions in random systems, seems to be
rather a general one, at present it has become common to call any such contribution the ‘Griffiths
singularity’.

Due to intensive theoretical [2] and numerical [3] studies of the Griffiths singularities it
was also discovered that thedynamicalproperties of the system in the temperature interval
Tc < T < T

(0)
c are not just ordinary paramagnetic. According to numerical simulations, the

time correlation functions here can be described in terms of the so-called stretched-exponential
asymptotic behaviour (∼ exp{−(const)tλ(T )} with λ < 1), which is different from the usual
exponential one, as it should be in the paramagnetic phase. On the other hand, recent analytical
calculations [4] yield a time decay of the form exp{−(const)(ln t)D/(D−1)} (whereD is the
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dimensionality of the system). To underline that the properties of the system in the temperature
intervalTc < T < T

(0)
c are not quite paramagnetic, it has become common to call the state of

the system here the ‘Griffiths phase’.
At the level of ‘hand-waving arguments’ the dynamical Griffiths phenomena can be

explained ‘theoretically’ rather easily: considering, for example, the bond diluted Ising
model, one can note that at temperatures belowT

(0)
c in the ‘ocean’ of the zero magnetization

paramagnetic background the random system must contain disconnected locally ordered
‘ferromagnetic islands’ (composed only of the pure system bonds) of all sizes, which, in turn,
create the whole spectrum (up to infinity) of relaxation times. Having an infinite spectrum
of relaxation times, with some imagination, it is not difficult to derive any relaxation law one
likes, and the stretched-exponential one in particular.

Although it is commonly believed that the main point of the above ‘explanation’, namely
the existence of an infinite number of local minima states, must be a general key for
understanding the Griffiths phenomena (both dynamical and statistical mechanical), despite
many efforts during the last 30 years, it has turned out to be extremely difficult to construct
a more or less elaborated and convincing theory. For this reason any progress towards
understanding the effects produced by numerous local minima states (which, so to say, are
away from the perturbative region) looks valuable.

In this paper, we study non-perturbative contributions to the thermodynamical functions
of a weakly disordered (random temperature)D-dimensional (D < 4) Ising ferromagnet in
the paramagnetic phase away from the critical point. In the continuous limit this system can
be described by the usual Ginzburg–Landau Hamiltonian:

H [φ(x); δτ(x)] =
∫

dDx[ 1
2(∇φ(x))2 + 1

2(τ − δτ(x))φ2(x) + 1
4gφ

4(x)]. (1.1)

Hereτ ≡ (T −Tc)/Tc� 1 is the reduced temperature, and the quenched disorder is described
by random spatial fluctuations of the local transition temperatureδτ(x) whose probability
distribution is taken to be symmetric and Gaussian:

P [δτ ] = p0 exp

(
− 1

4u

∫
dDx(δτ(x))2

)
(1.2)

whereu � g is the small parameter which describes the strength of the disorder, andp0 is
an irrelevant normalization constant. For notational simplicity, we define the sign ofδτ(x) in
equation (1.1) so that positive fluctuations lead to locally ordered regions, whose effects will
be the object of our further study.

As far as the corresponding pure system (u ≡ 0) is concerned, it is well known that in
the close vicinity ofTc, at |τ | � τg ∼ g2/(4−D), its properties are defined by non-Gaussian
critical fluctuations (which can be studied, e.g., in terms of theε-expansion renormalization
group approach), while away fromTc, at |τ | � τg, the situation becomes Gaussian, and
everything becomes very simple. Here the total magnetization of the system is defined by the
order parameter〈φ〉 ≡ φ0(τ ) which is equal to zero aboveTc, and is equal to±√|τ |/g below
Tc; the asymptotic behaviour of the correlation functionG(x − x ′) ≡ (〈φ(x)φ(x ′)〉 − φ2

0) is
defined only by the Gaussian fluctuations:G(x) ∼ |x|−(D−2); and the singular part of the free
energyf (τ) scales with the temperature asf (τ) ' τD/2.

Usually, the random system, defined by the Hamiltonian (1.1), is studied from the point
of view of the effects produced by the quenched disorder on the critical phenomena in close
vicinity to the phase transition point. A renormalization group consideration shows that if the
temperature is not too close toTc, at τu � τ � τg (where the disorder-dependent crossover
temperature scaleτu ∼ u1/α is defined by the specific heat critical exponentα > 0 of the
pure system) the critical behaviour is essentially controlled by the pure system fixed point, and
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the disorder produces only irrelevant corrections. On the other hand, in close vicinity to the
critical point, atτ � τu, the critical behaviour moves into a new universality class defined by
the so-called random fixed point, which turns out to be universal [5]. In recent years, however,
this very nice physical picture has been questioned on the grounds that the renormalization
group approach completely misses the presence of numerous local minima configurations of
the random Hamiltonian (1.1), which, in principle, may cause spontaneous replica symmetry
breaking in the interaction parameters of the critical fluctuations, which, in turn, may ruin the
above physical scenario [6].

Leaving the discussion of this very difficult problem for future analysis, in this paper
we would like to pose a much simpler question: How do the thermodynamic functions of
this system depend on the strength of the disorderu (in the limit u → 0) far away fromTc,
at τ � τg, where the behaviour of the pure system is correctly described by the Gaussian
approximation? It turns out that even this, which seems an almost trivial question, is not so
easy to answer.

Of course, first, one can proceed in a straightforward way, by developing the perturbation
theory in powers of the parameteru at the background of the pure system paramagnetic state
〈φ〉 = 0 using the Gaussian approximation for the thermal fluctuations. There is nothing wrong
in this approach, but the problem is that it cannot giveall the thermodynamic contributions
which exist atu 6= 0. The drawback with this type of perturbation theory is the same as that
of the renormalization group: it completely misses the existence of numerous (a macroscopic
number) local minima configurations of the random Hamiltonian (1.1).

It is worth noting that even in the case of the zero-dimensional version of the system
considered here, the free energy as a function ofu was shown to have essential singularity in
the limit u→ 0. The explicit form of this singularity has been calculated analytically, first in
terms of the vector replica symmetry breaking ansatz by Brayet al [7], and subsequently this
result has been confirmed without the use of replicas by McKane [8].

At the level of ‘hand waving arguments’ it is very easy to see what all these off-perturbative
states are. At anyu 6= 0 there exists a finite (exponentially small) density of ‘ferromagnetic
islands’ in which the local (random) temperature is belowTc (such thatδτ(x) > τ ), and
the minimum energy configurations here are achieved at a non-zero local value of the order
parameter:φ0(x) ∼ ±

√
(δτ − τ)/g. Since the spatial density of such islands is finite and

each island provides two(±) possibilities for the local magnetization, the total number of local
minima configurations in the system must be exponential in its volume.

Formally, to take into account the contributions of all these states, one has to proceed as
follows. For an arbitrary quenched functionδτ(x) one has to find all possible local minima
solutions of the saddle-point equation:

−1φ(x) + (τ − δτ(x))φ(x) + φ(x)3 = 0. (1.3)

Then one has to substitute these solutions into the Hamiltonian (1.1) and calculate the
corresponding thermodynamic weights. Next, to compute the partition function one has to
perform summation over all the solutions, and finally to get the corresponding free energy one
has to take the logarithm of the partition function and average it over random functionsδτ(x)

with the probability distribution (1.2). Clearly, it is hardly possible that such a program can
be implemented.

On the other hand, as usual, for the systems which contain quenched disorder we can use
the standard replica method and reduce the problem of the quenched averaging to the annealed
one forn copies of the original system:

F = −(lnZ) = − lim
n→0

1

n
(Zn − 1) (1.4)
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where (. . .) denotes the averaging over random functionsδτ(x) with the probability
distribution (1.2), and

Z[δτ(x)] =
∫
Dφ(x) exp(−H [φ(x); τ(x)]) (1.5)

is the disorder-dependent partition function which is given by the functional integration over
configurations of the fieldφ(x).

Simple Gaussian integration overδτ(x) in equation (1.4) yields

Zn =
n∏
a=1

[ ∫
Dφa(x)

]
exp(−Hn[φa(x)]) (1.6)

where

Hn[φa(x)] =
∫

dDx

[
1

2

n∑
a=1

(∇φa)2 +
1

2
τ

n∑
a=1

φ2
a +

1

4
g

n∑
a=1

φ4
a −

1

4
u

n∑
a,b=1

φ2
aφ

2
b

]
(1.7)

is thespatially homogeneousreplica Hamiltonian.
Now, if we are intended to take into account non-trivial local minima states, instead

of solving the original inhomogeneous stationary equation (1.3), we can consider the
corresponding replica saddle-point equations:

−1φa(x) + τφa(x) + φ3
a(x)− uφa(x)

n∑
b=1

φ2
b(x) = 0. (1.8)

Since until now all the transformations have been exact, these equations must contain (maybe
in a slightly hidden way) all the relevant non-trivial states which in the language of the original
random Hamiltonian correspond to rare ferromagnetic islands.

At this stage we can note one very simple point. Looking for various types of solutions
of the above equations one can first try the simplest possible ‘replica symmetric’ ansatz, in
which the fields in all replicas are assumed to be equal:φa(x) = φ(x). In this case the last
term in equations (1.8) (which contains the factor

∑n
b=1 φ

2
b(x) = nφ2(x)) drops away in the

limit n→ 0, and these equations reduce to thepure systemsaddle-point equation

−1φ(x) + τφ(x) + φ(x)3 = 0 (1.9)

which atτ > 0 has only the trivial solutionφ(x) ≡ 0. This means that in any non-trivial
solution of equations (1.8) the fieldsφa(x) in different replicascannotall be equal. In other
words, the symmetry among replicas in thereplica vectorφa(x) must be broken.

The methodological aspects of how to handle the vector replica symmetry breaking
situation in various disordered systems are described in [9]. In the next section this method
will be applied to the problem described above. It will be shown that, indeed, in the high-
temperature region (τ > 0) equations (1.8) have non-trivial localized (having finite size and
finite energy) solutions in which the replica symmetry in the fieldsφa(x) is broken. The
formal summation over all such solutions provides the contribution to the free energy of the
typical Griffiths-like form: exp{−(const)τ (4−D)/2/u}. It will also be shown that the mean-
field approach (in which the critical fluctuations are ignored) used in this paper is grounded
only if the temperature is not too close toTc, namely atτ � τg ∼ g2/(4−D), the same as
in classical Ginzburg–Landau theory. Finally, it will be demonstrated how this type of non-
analytic contribution to the free energy can be estimated from purely physical arguments taking
into account probabilities for the typical ‘ferromagnetic islands’.

To avoid possible misunderstandings, as a conclusion to this introductory section we would
like to note the following essential point. The problem considered in this paper is actually
rather far from the original one studied by Griffiths as well as by many other people later on.
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Since the shift ofTc in the weakly disordered ferromagnet compared toT
(0)
c of the pure system

is of the order of
√
u, in the limitu� g the interval of temperaturesTc < T < T

(0)
c , where the

so-called Griffiths phase is expected to take place, appears to be well inside the temperature
intervalτg ∼ g2/(4−D) where the critical fluctuations are essential, and where the mean-field
approach considered in this paper cannot be used. For that reason, in the considered range
of temperaturesτ � τg it is hardly reasonable to look for non-analytic behaviour of the free
energy as a function of the external magnetic field (at least the present approach in terms of
the replica instantons modified by the external fieldh does not seem to indicate on any non-
analyticity inh). The aim of this paper is just to demonstrate that in addition to the ‘usual’
Griffiths singularities in terms of the external field, the free energy of the random ferromagnet
(in the zero magnetic field) must also be non-analytic in the value of the parameter which
describes the strength of the disorder.

2. Replica instantons

Following the general strategy developed in [9], let us assume that in addition to the trivial
replica symmetric (RS) solutions of the saddle-point equations (1.8) there exist other types
of solutions, which arewell separatedin the configurational space from the RS state. In
this case, denoting the contribution of these non-trivial states by the label ‘replica symmetry
breaking’ (RSB), the replica partition function, equation (1.6), can be decomposed into two
parts

Zn = ZRS +ZRSB (2.1)

whereZRS contains all the perturbative contributions in the vicinity of the trivial state
φa(x) = 0. As usual, this partition function can eventually be represented in the form

ZRS= exp(−nVfRS) (2.2)

whereV is the volume of the system andfRS is the free energy density, which contains the pure
system leading term∼τD/2 (at temperatures not too close toTc, τ � τg), plus the perturbation
series in powers of the disorder parameteru.

Thus, in terms of the general replica approach, according to equation (1.4) for the total
free energy we get

F = VfRS + FRSB (2.3)

where the additional RSB part of the free energy

FRSB= − lim
n→0

1

n
ZRSB (2.4)

must contain all non-perturbative contributions (if any) which are away from the trivial state
φa = 0. It is this part of the free energy which will be a point of our further study.

The simplest possible non-trivial replica structure for the solutions of the saddle-point
equations (1.8) can be taken in the following form (see [9])

φa(x) =
{±φ(x) for a = 1, . . . , k

0 for a = k + 1, . . . , n
(2.5)

wherek is the integer value parameter:k = 1, 2, . . . , n which defines a given structure of
the trial replica vectorφa (note that the valuek = 0 should be excluded since it describes the
trivial RS solution which is already taken into account infRS). The solutions in equation (2.5)
are taken with the ‘±’ signs, since the saddle-point equations (1.8) are invariant with respect
to the global change of signs of the replica fields.
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Substituting this ansatz into equations (1.8) as well as into the replica Hamiltonian (1.7),
one finds that for a given value of the parameterk the fieldsφ(x) in equation (2.5) are defined
by the solutions of the following saddle-point equation

−1φ(x) + τφ(x)− λ(k)φ(x)3 = 0 (2.6)

and the thermodynamic weight of any such solution is defined by the energy:

E(k) = k
∫

dDx[ 1
2(∇φ(x))2 + 1

2τφ
2(x)− 1

4λ(k)φ
4(x)] (2.7)

where

λ(k) = (uk − g). (2.8)

Summing over the parameterk and taking into account the combinatorial factor, which is
the number of permutations among replicas in the ansatz structure (2.5) for the free energy,
equation (2.4), one obtains

FRSB= − lim
n→0

1

n

n∑
k=1

n!

k!(n− k)! 2k exp{−E(k)} (2.9)

(the factor 2k appears due to independent summation over± signs, ink non-zero replicas,
equation (2.5)). To take the limitn → 0 the series in the above equation can be represented
as follows:

FRSB= − lim
n→0

1

n

∞∑
k=1

0(n + 1)

0(k + 1)0(n− k + 1)
2k exp{−E(k)}. (2.10)

Here the summation with respect tok is extended beyondk = n to∞ since the gamma function
is equal to infinity at negative integers. Now using the relation0(−z) = π [z0(z) sin(πz)]−1,
we can perform the analytic continuationn→ 0:

0(n + 1)

0(k + 1)0(n− k + 1)
= 0(n + 1)(k − 1− n)0(k − 1− n) sin(π(k − 1− n))

π0(k + 1)

∣∣∣∣
(n→0)

' n(−1)k−1

k
. (2.11)

Thus, for the free energy (2.9) one obtains

FRSB= −
∞∑
k=1

(−1)k−1

k
2k exp{−E(k)}. (2.12)

At this stage we can note the following important point. For anynon-localized(e.g. space-
independent) solution, such that its energy (2.7) is divergent with the volumeV of the system,
the corresponding contribution to the free energy (2.12) will not be proportional toV , but
instead it will contain the volume in the exponential factor. This means that at least for the
bulk properties of the system this type of solution must be irrelevant.

Thus, we have to look forlocalizedsolutions: those which are local in space (breaking
translation invariance) and which havefinite (volume-independent) energy. Let us suppose
that such instanton-type solutions do exist (see later), and that for a givenk the solution is
characterized by the spatial sizeR(k). Then, if we take into account only one-instanton
contribution (or in other words if we consider a gas ofnon-interactinginstantons), due to the
obvious entropy factorV/RD (which is the number of positions of the object of the sizeR in
the volumeV ) we get the free energy proportional to the volume:

FRSB' −V
∞∑
k=1

(−1)k−1

k
R−D(k)2k exp{−E(k)}. (2.13)
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Now let us come back to the saddle-point equation (2.6), and let us consider the range of
the parameterk such thatλ(k) = (uk − g) > 0 (i.e.k > [g/u]). Rescaling the fields

φ(x) =
√

τ

λ(k)
ψ(x
√
τ) (2.14)

instead of equation (2.6) one obtains the following differential equation which contains no
parameters:

−1ψ(z) +ψ(z)− ψ3(z) = 0. (2.15)

Correspondingly, for the energy, equation (2.7), one obtains

E(k) = k

uk − g τ
(4−D)/2E0 (2.16)

where

E0 =
∫

dDz[ 1
2(∇ψ(z))2 + 1

2ψ
2(z)− 1

4ψ
4(z)]. (2.17)

Equation (2.15) is well known in field theory (see, e.g., [10]): for the present choice of
signs of the linear and the cubic terms (which imposes the conditionsτ > 0 andk > [g/u]) in
dimensionsD < 4 this equation has spherically symmetric instanton-like solutions such that

ψ(|z| 6 1) ' ψ(0) ∼ 1

ψ(|z| � 1) ∼ exp(−|z|)→ 0. (2.18)

The energy, equation (2.17), of such a solution is a finite andpositivenumber. Of course, for a
genericvalue of the fieldψ(0) at the origin, the solution tends to the valuesψ(|z| → ∞) = ±1
which are the extrema of the potential1

2ψ
2 − 1

4ψ
4, and any such solution has divergent

energy (2.17). However, there exists a discrete set of initial valuesψ0 for which the solution
(exponentially) tends to zero at infinity, and which has finite energies. It can be shown that
the solution with minimal energyE0 corresponds to the minimal value of|ψ0| in the set. In
particular, atD = 3,ψ0 ' 4.34 andE0 ' 18.90. For our further calculations with exponential
accuracy it will be sufficient to take into account only the solution with the minimal energy.

According to the rescaling (2.14), in terms of the original fieldsφ(x) the size of the
instanton isR = τ−1/2 (note that it does not depend onk), which coincides with the usual
correlation length of Ginzburg–Landau theory. Substituting this value ofR as well as the
energy (2.16) of the instanton into the series (2.13) for the free energy one gets

FRSB' −V τD/2
∞∑

k>[g/u]

(−1)k−1

k
2k exp

[
−E0

k

uk − g τ
(4−D)/2

]
. (2.19)

It can easily be shown that under the considered conditions on the parametersu, g and τ
(u � g � 1, andg2/(4−D) � τ � 1) the leading contribution in the above series with
exponential accuracy comes from the regionk � g/u� 1:

1

V
FRSB' τD/2 exp

[
−E0

τ (4−D)/2

u

] ∞∑
k�g/u

(−1)k−1

k
2k. (2.20)

Here the absolute value of the series
∑∞

k=k0�1 k
−1(−1)k−12k can be estimated by the upper

bound∼k−1
0 2k0, and since it is assumed thatτ � g2/(4−D) the term(g/u) ln 2, which appears

in the exponential, can be dropped in comparison withE0τ
(4−D)/2/u. Thus, for the density of

the free energy we finally obtain the following contribution

1

V
FRSB∼ exp

[
−E0

τ (4−D)/2

u

]
(2.21)

(where we have dropped all pre-exponential factors, which within the present accuracy of
calculations cannot be defined).
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3. Fluctuations

Note, first, that one should not be confused by the ‘wrong’ sign of theφ4 interaction term in the
energy function (2.7), which for the usual field theory would indicate its absolute instability.
Here, as is usual in replica theory, in the limitn → 0 everything turns ‘up down’, so that
the minima of the physical free energy actually correspond to themaximaof the replica free
energy. It can be easily shown (see later) that formal integration overn-component replica
fluctuations around the considered instanton solution in the limitn → 0 yields a physically
sensible result.

Proceeding the same way as in usual Ginzburg–Landau theory, let us determine under
which conditions the above mean-field approach used to derive the result (2.21) can be valid.
Introducing small fluctuationsϕa(x) near the instanton solution, equations (2.5) and (2.14),
φa(x) = φ(inst)

a (x) + φa(x), in the Gaussian approximation we get the following Hamiltonian
for the fluctuating fields

H [ϕ] =
∫

dDx

[
1

2

n∑
a=1

(a(x))
2 +

1

2
τ

n∑
a,b=1

Tab(x)ϕa(x)ϕb(x)

]
(3.1)

where the matrixTab(x) contains thek × k block

T
(k)
ab (x) =

(
1− uk − 3g

uk − g ψ
2(x
√
τ)

)
δab − 2u

uk − gψ
2(x
√
τ) (3.2)

(wherea, b = 1, . . . , k) and the diagonal elements for the remaining(n− k) replicas

T
(n−k)
ab =

(
1− uk

uk − gψ
2(x
√
τ)

)
δab (3.3)

(wherea, b = k + 1, . . . , n). Here the functionψ(z) is the instanton solution, equation (2.18).
Since the mass term in the Hamiltonian (3.1) is proportional toτ , the behaviour of the

correlation function of the fluctuating fields at scales|x| � Rc ∼ τ−1/2 appears to be the same
as in Ginzburg–Landau theory:Gab(x−x ′) = 〈ϕa(x)ϕb(x ′)〉 ∼ |x−x ′|−(D−2)δab (beyondRc

this correlation function decays exponentially). Therefore, the typical value of the fluctuations
〈ϕ2〉 can be estimated in the usual way:

〈ϕ2〉 ∼ 1

n

n∑
a=1

R−Dc

∫
|x|<Rc

dDx Gaa(x) ∼ τ (D−2)/2. (3.4)

The saddle-point approximation considered in the previous section is justified only if the typical
value of the fluctuations is small compared to the value of the ‘background’ instanton field
φ(inst)(x) ∼ √τ/λ(k) (see equation (2.14)):

τ (D−2)/2� τ

λ(k)
⇒ λ(k) ∼ uk � τ (4−D)/2. (3.5)

On the other hand, the contribution (2.21) appears due to summation in the regionk � g/u.
Thus, one can get this type of contribution to the free energy only in the following interval of
summation with respect tok:

g

u
� k � 1

u
τ (4−D)/2. (3.6)

This interval exists provided

τ � g2/(4−D) (3.7)

which is the usual Ginzburg–Landau criteria.
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One can also arrive at the same conclusion by deriving the fluctuational contribution
to the RSB part of the free energy by direct integration over the fluctuating fields using
the Gaussian Hamiltonian (3.1) (this way one can also check that this contribution contains
no imaginary parts which would happen, if the considered extrema would correspond to a
physically unstable field configuration). Assuming theθ -like structure of the instanton solution,
ψ(|z| 6 1) ' ψ(0) ≡ ψ0 ∼ 1 andψ(|z| > 1) = 0, the fluctuating modes with momenta
p � √τ andp � √τ in the Hamiltonian (3.1) can be explicitly decoupled

H = 1

2

n∑
a,b=1

∫
|p|�√τ

dDp

(2π)D
[p2δab + τTab]ϕa(p)ϕb(−p) +

1

2

n∑
a=1

∫
|p|�√τ

dDp

(2π)D
p2|ϕa(p)|2

(3.8)

where thep-independent matrixTab is given by equations (3.2) and (3.3), in which instead of
the functionψ(x

√
τ) one has to substitute the constantψ0.

The integration over thereplica symmetricmodes with momentap � √
τ (they

correspond to fluctuations at scales much bigger than the size of the instanton), described
by the second term of the Hamiltonian (3.8), gives the contribution of the form exp(−nV f̃RS),
and it vanishes in the limitn → 0 (note that in the RSB part of the free energy we have to
keep only the terms which remainfinite in the limitn→ 0 and not linear inn). This is natural,
because this contribution is already contained in the RS part of the free energy.

The integration over the modes with momentap � √τ is slightly cumbersome but
straightforward:

Z̃RSB≡
∏
p�√τ

[ ∫
Dϕa(p)

]
exp{−H [ϕa(p)]}

= exp

[
− 1

2
τ−D/2

∫
p�√τ

dDp Tr ln(p2δab + τTab)

]
. (3.9)

The matrix under the logarithm in the above equation contains(k − 1) eigenvalues

λ1 = p2 + τ

(
1− uk − 3g

uk − g ψ
2
0

)
(3.10)

one eigenvalue

λ2 = p2 + τ

(
1− uk − 3g

uk − g ψ
2
0

)
− τ 2uk

uk − gψ
2
0 (3.11)

and(n− k) eigenvalues

λ3 = p2 + τ

(
1− uk

uk − gψ
2
0

)
. (3.12)

Substituting these eigenvalues into equation (3.9), after simple algebra in the limitn→ 0 one
eventually obtains the following result:

Z̃RSB∼ exp

(
3k

2(uk − g)gψ
2
0

)
. (3.13)

Thus we see that in the regionτ � g2/(4−D) the factorkg/(uk − g) in the exponential of
the above equation is small compared to the leading termkτ (4−D)/2/(uk − g) given by the
saddle-point solution, equation (2.16).
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4. Discussion

It is interesting to note that the non-analytic instanton contribution of the form given by
equation (2.21) can be easily ‘derived’ based on qualitative physical arguments. Let us again
consider the random Hamiltonian (1.1) at temperatures aboveTc (τ > 0), and let us estimate
the contribution to the free energy coming from rare ‘ferromagnetic islands’ whereδτ(x) > τ .
In the mean-field regime at finite values ofτ the typical smallest (most probable) size of such
an island isRc ∼ τ−1/2. Therefore, according to the probability distribution, equation (1.2),
in the limit of weak disorder (u → 0) the contribution of the islands to the free energy with
exponential accuracy can be estimated by their probability

δF ∼
∫ ∞
τ

d(δτ ) exp

(
− (const)

u
τ−D/2(δτ )2

)
∼ exp

(
− (const)

u
τ (4−D)/2

)
(4.1)

which (up to the undefined (const) factor) coincides with the result (2.21).
The above qualitative consideration seems rather valuable because it provides good

physical support for a more exact but slightly formal and somewhat mysterious vector replica
symmetry breaking scheme considered in section 2.

Of course, exponentially small contributions to the free energy (as well as to other
thermodynamical functions) of the type (2.21) are not so important for thermodynamical
properties of the random ferromagnet in the considered paramagnetic temperature region.
Nevertheless, the fact of their existence seems very interesting for two reasons.

First, it tells us that even in the mean-field regime the free energy of the random ferromagnet
must be a non-analytic function of the parameter which describes the strength of disorder
u→ 0, which is interesting in itself.

Second, it indicates the importance of nonlinear excitations which in terms of the present
replica field theoretical approach are described by the localized instanton-like solutions of
the stationary equations. In the considered mean-field region away fromTc these excitations
provide only exponentially small corrections. However, in the close vicinity of the critical
point the presence of instantons (which is ignored in the standard renormalization-group
approach), and their interactions with the critical fluctuations may produce a dramatic effect
on the critical properties of the phase transition. It is worth noting that although in the scaling
regime (atT = Tc) the situation looks very different from that considered in this paper,
the corresponding stationary equations (1.8) (withτ = 0) also have nonlinear instanton-like
solutions with the RSB structure given by equation (2.5). One can easily check that in the
dimensionD = 4 these solutions can be found explicitly [11]

φ(x) =
√

8

(uk − g)
R

R2 + |x|2 (4.2)

where the size of the instantonR appears to be thezero mode(the energy of the instanton does
not depend onR). In dimensions below but close to four (atε = (4− D) � 1) the field
configuration given by equation (4.2) can be considered as the approximate solution which
contains the parameterR as thesoft mode, since the energy of the instanton, equation (2.7),
depends onR very weakly

E(k) = 4

3
SDR

−ε k

uk − g (4.3)

(hereSD is the square of the unitD-dimensional sphere).
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At present it is not quite clear how all these nonlinear instanton excitations could be
incorporated into the self-consistent theory of the critical fluctuations. Keeping in mind the
fact that the degrees of freedom of this type explicitly break the replica symmetry, a kind of
‘heuristic’ renormalization group approach has been proposed [6], in which it was assumed that
due to interactions of the fluctuations with this type of non-perturbative excitations the replica
symmetry in the effective matrix, describing nonlinear interactions of the fluctuating fields, is
spontaneously broken. This resulted in the instability of previously known fixed points and
remarkable ‘runaway’ behaviour of the renormalization group flows (which, e.g., may indicate
the onset of a kind of glass-like phase in a narrow temperature interval aroundTc). We hope
that the study described in the present paper stimulates further much deeper investigation of
the physics of the phase transition in random ferromagnets.
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